
d EPARTMENT OF DEFENCE

DEFENCE SCIENCE & TECHNOLOGY ORGANISATION DSTO

A Primer of CORBA: A Framework
for Distributed Applications in
Defence

T.A. Au

DSTO-GD-0192

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

19990510 006
^QUALITY INSPECTED 4

A Primer of CORBA: A Framework for Distributed
Applications in Defence

T. A. Au

Communications Division
Electronics and Surveillance Research Laboratory

DSTO-GD-0192

ABSTRACT

Based on object technology, the OMG defines an Object Management Architecture
(OMA) for the support of interoperable applications across heterogeneous computing
platforms. The communication core of this underlying model is the Common Object
Request Broker Architecture (CORBA) that provides a framework for flexible and
transparent communication between distributed objects. The adoption of this approach
eases software development by allowing interaction between reusable components
through well-defined interfaces. In particular, applying CORBA technology to C4I
problems in the military environment provides simple integration of legacy software
and COTS software. This report provides an overview of the OMA, and describes in
detail each component of CORBA.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE & TECHNOLOGY ORGANISATION DSTO

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108 Australia

Telephone: (08)82595555
Fax: (08) 8259 6567
© Commomuealth of Australia 1999
AR-010-622
March 1999

APPROVED FOR PUBLIC RELEASE

A Primer of CORBA: A Framework for
Distributed Applications in Defence

Executive Summary

Distributed object computing is a promising technology that is fast becoming the
dominant computing paradigm of the future. Inevitably, a critical part of software
development is integrating present and future software, so that legacy systems can still
remain fully operational in new environments. Using an object-oriented approach, the
Object Management Group (OMG) defines an Object Management Architecture (OMA)
for the support of interoperable applications across heterogeneous hardware platforms
and operating systems. By adopting interface and protocol specifications, the OMA is
expected to provide an underlying model for all software components, embracing
those which were previously developed or which are not necessarily object-oriented.

The Common Object Request Broker Architecture (CORBA) is the communication
heart of the OMG OMA, which provides a framework for flexible and transparent
communication between distributed objects in heterogeneous computing
environments. CORBA is a well-established and widely adopted standard that
specifies the attached components and how they interoperate. Essentially, distributed
CORBA objects provide scalable and flexible solutions for heterogeneous environments
and for the Internet and intranets. The adoption of this approach eases software
development by allowing interaction between reusable components through well-
defined interfaces.

Owing to the increasing dominance of joint military operations in the future, the
interoperability of military communications and information systems within and
across individual Services (Navy, Army, and Air Force) will be more prominent.
Applying CORBA technology to C4I problems in the military environment provides
simple integration of these systems. Such integration greatly increases the value of
information that spread across various defence applications and different computer
platforms, thereby fulfilling the operational requirements of modern battlefield
interoperability.

This report is intended to serve as a tutorial on CORBA, covering from the OMA to
each component of CORBA. The OMG is also striving, at a high level of abstraction, to
define various services and facilities necessary for distributed object computing. These
components will provide fundamental object interfaces necessary for building object
frameworks towards specific application domains such as telecommunications,
medical systems, finance, manufacturing, and C4I systems.

Authors

T. A. Au
Communications Division

Andrew Au is a Research Scientist in Netxoork Integration Group
with interests in traßc control and performance guarantees for
high speed netioorks. He has been investigating ATM signalling
and communications issues in distributed computing
environments.

Contents

1. INTRODUCTION 1

2. INCREASING DEGREES OF INTEROPERABILITY 2

3. THE OBJECT MANAGEMENT ARCHITECTURE 4
3.1 OMA Component Definitions 4
3.2 Object Frameworks 7

4. THE CORBA OBJECT MODEL 8
4.1 Requests 8
4.2 Types 8

4.3 Interfaces 9
4.4 Operations • 9
4.5 Object Implementation 10

5. COMMON OBJECT REQUEST BROKER ARCHITECTURE 10
5.1 Object Request Broker 12

5.1.1 Example ORBs 12
5.2 Object References • •• 14
5.3 Clients 14
5.4 Client Stubs 15
5.5 Dynamic Invocation Interface 16
5.6 Interface Repository 16
5.7 Object Implementations 16
5.8 Implementation Skeleton 17
5.9 Dynamic Skeleton Interface 17
5.10 Implementation Repository 18
5.11 Object Adaptors18
5.12 ORB Interface 19

6. OMG INTERFACE DEFINITION LANGUAGE 19
6.1 IDL Specif ications 20
6.2 Programming Language Mappings 21

7. STATIC METHOD INVOCATION 22
7.1 Stubs and Skeletons 23
7.2 Generating Interface Stubs and Skeletons 23
7.3 Activating Static Invocation 24

8. DYNAMIC INVOCATION AND DISPATCH 25
8.1 Dynamic Invocation Interface 26

8.1.1 Obtaining an Object Reference 26
8.1.2 Constructing a Request 27
8.1.3 Invoking the Request 27

8.2 Dynamic Skeleton Interface 28

9. THE INTERFACE REPOSITORY 29
9.1 The Containment Hierarchy of Interface Repository Classes 29

9.2 Interface Retrieval 31
9.3 Federated Interface Repositories 32

9.3.1 OMGIDL Format 32
9.3.2 DCE Universal Unique Identifier (UUID) Format 32
9.3.3 Local Format 32

10. THE ORB INTERFACE 33
10.1 Converting Object References to Strings 33
10.2 Object Reference Operations 33

11. THE BASIC OBJECT ADAPTOR 34

12. INTER-ORB ARCHITECTURE 37

13. CONCLUDING REMARKS 38

REFERENCES 40

APPENDLX - ORB PSEUDO-OBJECTS 41

DSTO-GD-0192

1. Introduction

The prevalence of computers in routine business functions has created a heterogeneous
information-processing environment, embracing vast networks of autonomous and
distributed computing resources. Clearly, there is a growing need for technology to
flexibly coordinate these diverse computing resources to fully integrate distributed
systems. These efforts are expected to facilitate portability of applications and
interoperability of systems and networks, in support of challenging new information
processing requirements.

In recent years, distributed computing has made significant advances to support
objects distributed across a network, showing dominance of the object-oriented
paradigm. An object is a unique instance of a data structure (abstract data type)
encapsulated with a set of routines, called methods which operate on that data. This
approach entails the transparent distribution of applications across networks of
heterogeneous computers from different vendors. For large organisations such as
defence, legacy systems pose a serious problem because these systems are mission-
critical and must remain fully operational at all times even in new computing
environments.

One of the main problems facing distributed computing is software component
integration. To achieve this integration, the Object Management Group (OMG) has
undertaken definition of a distributed object computing platform for inter-
communication of application objects in widely distributed, heterogeneous
environments. With over 800 member companies, the OMG is an international industry
consortium formed to develop, adopt, and promote standards for distributed object
computing. The OMG Object Management Architecture (OMA) aims to define at a
high level of abstraction, various facilities necessary for distributed object computing.
Within this architectural framework, the technology adopted for Object Request
Brokers (ORBs) is known as the Common Object Request Broker Architecture
(CORBA) for transparent communication between application objects. Indeed, this is
an OMG specification based on the standard interface definition between OMG-
compliant objects.

Military communications and information systems have been characterised by the
development of expensive, purpose-built and non-interoperable systems. Owing to the
increasingly dominance of joint military operations in the future, the interoperability of
these systems within and across Services will be more prominent. Object technology,
particularly the CORBA, offers several benefits for military systems including support
for application diversity, technology insertion, system evolution and distribution. The
integration of interoperable military systems greatly increases the value of information
spread across various defence applications over different computer platforms, thereby
fulfilling the operational requirements of modern battlefield interoperability.

DSTO-GD-0192

This report is intended to provide an overview of OMA, and a snapshot of CORBA, in
achieving interoperability across platforms and applications. Section 2 discusses
increasing degrees of interoperability from basic interconnectivity to business
collaboration. Section 3 introduces the OMG OMA. Section 4 explains the CORBA
Object Model, and Section 5 provides an overview of CORBA. Section 6 describes the
OMG Interface Definition Language (IDL) that bridges diverse programming
languages, operating systems, networks and object systems. CORBA supports both
static and dynamic method invocations, as discussed in Sections 7 and 8, respectively.
Section 9 presents the Interface Repository (IR) that stores the interface specifications of
each object on the CORBA object bus. The interface to the ORB functions is described in
Section 10, and the Basic Object Adaptor (BOA) is discussed in Section 11. A general
ORB interoperability architecture is introduced in Section 12 for the support of
distributed objects across heterogeneous ORBs. Finally, concluding remarks are drawn
in Section 13.

For an introductory overview of the CORBA, readers may choose to skip Sections 6-11,
which are involved in more technical detail.

2. Increasing Degrees of Interoperability

There are many degrees of interoperability in a computing environment. Basic
interconnectivity only allows simple data transfer, whereas application-level
interoperability enables applications running in any environment to exchange
information and perform processing, even if they were developed at different times by
different developers. To this end, we identify three phases which are predominantly
involved in creating integrated, large-scale, distributed information systems.

1. Network Interconnectivity

To guarantee basic communication, computing resources are first interconnected to
exchange messages. Based on the prevalent client-server model, a distributed
system is organised as a number of distributed server processes that offer various
services to client processes across a network [1]. By means of interprocess
communication mechanisms such as remote procedure calls (RPCs), servers provide
clients with access to general system-defined services. Examples are file-storage,
printing, authentication, and naming services.

2. Software Interoperability

A more ambitious goal is to execute tasks jointly among interoperable computing
resources. Such interoperability involves intricate interactions through the use of
prograrnming capabilities such as an RPC mechanism extended with a data-
translation facility [1]. Examples are the integration of heterogeneous information in
advanced multimedia applications, and information storage in integrated
repositories. Although the basic client-server model does support a certain level of

DSTO-GD-0192

interoperability, the complexity of migrating from locally distributed systems to
more global systems demands new tools and techniques. In addition, greater
interoperability is required to allow various programming languages and
development tools to work together to reuse functions across platforms.

3. Business Collaboration

Business collaboration goes beyond software interoperability, simply by expanding
service boundaries of the software component infrastructure. This infrastructure
provides application-level collaboration in the form of application frameworks,
allowing developers to customise implementation methods based on business
requirements [2]. At this application level, software components are created to
behave like business objects1. They collaborate, more than just interoperate, at the
semantic level to accomplish a business process. For example in a car reservation
system, four business objects can be defined to represent customer, invoice, car, and
car lot with some agreed-upon semantics for communicating with each other to
perform business transactions.

In recent years, the trend towards higher levels of interoperability is evidenced by the
rapid growth in middleware technology. This category of software mediates between
an application program and a network so that the specifics of the operating
environment are isolated from the application. In addition, middleware provides
interfaces between clients and servers by managing the interaction between disparate
applications across heterogeneous computing platforms. An example of a middleware
program is the Object Management Group (OMG)'s Common Object Request Broker
Architecture (CORBA) that manages communication between objects.

Through the development of standards for distributed object computing, the OMG
attempts to provide a common architectural framework for portability and
interoperability in heterogeneous computing environments. By modelling a distributed
system as a collection of interacting objects, distributed components can communicate
with each other only using messages addressed to well-defined interfaces. This object
concept produces a natural model for integrating distributed computing resources,
which can be effectively applied to both distributed computing and
telecommunications environments. As object-oriented computing becomes more
mature and moves into the mainstream, the work of the OMG will increase in
importance.

1A business object is a piece of information which is of interest and recognisable to the business.
A set of different business objects working together is able to define a business enterprise. For
instance, one business object represents the accounts receivable while another business object
represents manufacturing.

DSTO-GD-0192

3. The Object Management Architecture

The OMG has developed is a high-level conceptual model of a complete distributed
environment, called the Object Management Architecture (OMA). This model specifies
an architectural framework of distributed objects that helps reduce the complexity,
lower the costs, and hasten the introduction of new software applications. Every
component in the architecture is defined in terms of an object-oriented interface. Only
through these interfaces can an object request services from any other object. The OMA
is supported by detailed interface specifications that drive the industry towards
interoperable, reusable, portable software components based on open, standard object-
oriented interfaces. Hence, this architecture becomes an underlying model for all
software components, including those which were previously developed or which are
not necessarily object-oriented.

The OMG Object Model provides an organised presentation of object concepts and
terminology, in which common object semantics are defined in a standard
implementation-independent way. These semantics specify the externally visible
interfaces that are used to interact with object state and object behaviour. Clients issue
requests to object services only through these well-defined interfaces, specified in the
OMG Interface Definition Language (IDL). The request carries information including
an operation, the object reference of the service object, and parameters, if any.
Typically, the implementation and location of each object are hidden from the
requesting client, thus ensuring interoperability between software components and
portability of applications. In each potential request, an interface to the target object is a
description of a set of possible operations that are specified in the OMG IDL.

The OMA Reference Model identifies and characterises components, interfaces, and
protocols, but does not in itself define them in detail. A particular computing or
business problem space is partitioned into practical, high-level architectural
components that can be addressed by various technologies. This model therefore
provides the means to build interoperable software systems distributed across all
hardware and software environments.

3.1 OMA Component Definitions

The OMA Reference Model identifies five components in heterogeneous environments:
Object Request Broker, Object Services, Common Facilities, Domain Interfaces, and
Application Objects. The OMA can also be viewed as three major segments consisting
of these five critical components:

1. Application Oriented Segment - Application Objects and Common Faculties are
solution-specific components, which are located closest to the end user.

DSTO-GD-0192

non-standardised application- application domain-specific
specific interfaces interfaces

Domain
Interfaces

tin S

horizontal facility
interfaces

Object Request Broker (software bus)

Object
Services

general service
interfaces

Figure 1: Object Management Architecture Reference Model

2. System Oriented Segment - the underlying infrastructure of distributed object
computing environments comprises of Object Request Broker (the communications
heart), and Object Services.

3. Vertical Market Oriented Segment - Domain Interfaces provide vertical extensions
to specific applications or domains, applicable for a variety of industries.

Figure 1 illustrates the Object Request Broker component and its interactions with the
other four categories of object interfaces. These five OMA components are defined as
follows:

• Object Request Broker (ORB)

The ORB is the "broker" which lets applications request use of another object
without knowing where that other object is located on the system or network. It
provides the basic object interaction capabilities which are necessary for any of the
components to communicate, independent of the specific platforms and
implementation techniques. The ORB finds the requested object, wherever it is
located, and passes the requested information to the requested object. It also passes
information back to the requester, as necessary. The ORB component guarantees
portability and interoperability of objects over a network of heterogeneous systems.
The ORB is commercially referred to as the Common Object Request Broker
Architecture (CORBA) in which the programming interfaces to the ORB component
are defined.

DSTO-GD-0192

• Object Services

The Object Services component standardises the life cycle management of objects
which are low-level system type services necessary for developing applications.
Functions are provided to create objects, to control access to objects, to keep track of
relocated objects and to consistently maintain the relationship between groups of
objects. These general purpose services are used by many distributed object
programs to provide for application consistency and to increase programmer
productivity. They are indeed the basic building blocks for distributed object
applications, from which higher level facilities and object frameworks can be
constructed for interoperability across multiple platform environments. Adopted
OMG Object Services are collectively called CORBAservices. Typical examples are
the naming service, and the trading service for the discovery of other available
services. Other services include life cycle management, security, transactions, and
event notification. Specifications for Object Services are contained in CORBAservices:
Common Object Services Specification.

• Common Facilities

The Common Facilities component provides a set of generic application functions
that can be configured to the requirements of a specific configuration, leading to
uniformity in generic operations and to better options for end users for configuring
their working environments. These are higher level services, which are semantically
closer to the application objects. For example, printing, document management,
database, and electronic mail facilities are readily usable by many applications. The
availability of such capabilities allows applications to be created quickly in a
portable and interoperable way. Adopted OMG Common Facilities are collectively
called CORBAfacilities in which an OpenDoc^based Distributed Document
Component Facility (DDCF) is included. The OMG intends to collect information
about Common Facilities in CORBAfacilities: Common Facilities Architecture.

• Domain Interfaces

These domain-specific interfaces are oriented towards many separate applications
domains. Examples are finance, manufacturing, telecommunications and medical
domains.

• Application Objects

To perform specific tasks for users, new classes of Application Objects can be built
by modifying existing classes through generalisation or specialisation provided by
Object Services. Application Objects are actually business objects and applications.
These are the ultimate consumers of the CORBA infrastructure. A particular
application can be constructed from a large number of basic object classes, partly

2 OpenDoc is a compound document architecture that enables embedding of features from
different application programs into a single working document.

DSTO-GD-0192

Application
Objects

Domain
Objects

Facility
Objects

Object Request Broker

Service
Objects

Object
Framework

AI : Application interface
DI : Domain interfaces

CF : Common facilities
OS : Object services

Figure 2 : OMA Reference Model Interface Usage

specific for the application, partly from the set of Common Facilities, thereby
improving developer productivity and configuration flexibility.

3.2 Object Frameworks

Object Frameworks are groups of higher level components that interact to provide
functionality of direct interest to end-users in particular application or technology
domains [3]. These are collections of cooperating objects typically oriented towards
domains such as telecommunications, health care, finance, and manufacturing. The
cooperating objects can also be categorised into application, domain, facility, and
service objects. Each object or component in an object framework supports some
combination of application, domain, common facility, and object services interfaces, as
illustrated in Figure 2. Some components support all types of interfaces, while others
support a subset of these interfaces. In general, service objects support object services
interfaces, whereas facility objects support common facilities interfaces and potentially
inherited object services interfaces. Domain objects support domain interfaces, and
potentially inherited common facility and object services interfaces. Likewise,
application objects support application interfaces and potentially all the other
interfaces.

DSTO-GD-0192

The basic client-server model is used to coordinate the interactions between two
objects. In order to provide the overall functionality of the object framework, objects
are able to make requests to all other objects on a peer-to-peer basis. Each component
uses the ORB to communicate with other components through the supported
interfaces. Depending on the occasion, an object can therefore act as either a client or a
server.

4. The CORBA Object Model

The OMG Object Model in the Object Management Architecture (OMA) is an abstract
object model that is not directly realised by any particular technology. The CORBA
Object Model, on the other hand, is a concrete object model based on the OMG Object
Model, which provides the underlying definitions for a particular technology. This
model encompasses more detailed specifications defined from the abstract concepts, in
particular, the interactions between clients and servers.

4.1 Requests

A client of a service is any entity capable of requesting the service. A request is an
event mat associates a set of information at a particular time, consisting of an
operation, a target object, zero or more (actual) parameters, and an optional request
context. In addition, a request form is supported as a description or pattern that can be
evaluated or performed multiple times to issue requests.

A client may request one or more services from an object. For the purpose of
identifying the request, an object may be identified by a value called an object name.
An object reference, however, reliably identifies a particular object that may be denoted
by multiple, distinct object references. Additional information about the request may
be provided by a request context. A request causes a service to be performed on behalf
of the client, and results, if any, may be returned to the client. An abnormal condition
may generate an exception to the client, carrying additional return parameters
particular to that exception.

4.2 Types

A signature defines the types of the parameters for a given operation. These types are
used to restrict a possible parameter or to characterise a possible result. The set of
values that satisfy a type is called the extension of the type. A type whose members are
objects is an object type. Values in a request are restricted to values that satisfy these
type constraints. Legal values of the OMG type hierarchy are shown in Figure 3. The
set of basic values includes various forms of integers, floating points, characters,
booleans, and any. Constructed values are structured types such as records (called

DSTO-GD-0192

Value

Object Reference Constructed Value

Basic Value
Struct Sequence Union Array

Short Long UShort ULong Float Double Cnar String Boolean Octet Enum Any

Figure 3: Legal Values ofOMG Type Hierarchy

structs), unions, arrays, and sequences. The type any is used to represent any possible
basic or constructed type.

4.3 Interfaces

An interface is a description of a set of possible operations that a client may request of a
target object. Interfaces are defined in OMG Interface Definition Language (IDL). An
object is able to support multiple interfaces through interface inheritance. An interface
may have attributes. A pair of accessor functions are declared: one to retrieve, and the
other to set the value of an attribute. However, only the retrieval accessor function is
defined in the case of read-only attribute.

4.4 Operations

An operation denotes a service that can be requested. An operation is an entity
identified by an operation identifier. The signature of an operation describes the
legitimate values of request parameters and returned results, which can be represented
as

[oneway] <op_type_spec> <identifier> (param 1, ..., paramL)
[raises (exceptl, ..., exceptN)] [context (name 1, ..., nameM)]

Two styles of execution semantics are defined: at-most-once and oneway. At-most-once is
the default semantics, indicating that if the operation successfully returns results, it
was performed exactly once, and if an exception is returned, then the operation was
executed either once or not at all. Oneioay specifies that best-effort semantics are
expected of requests for this operation. The client does not wait until the completion of
the operation and no result is returned.

The <op_type_spec> defines the type of return result and the <identifier>
specifies an operation name in the interface. The mode of each parameter can be either
in, out, or inout, according to the direction in which the information flows. The set of

DSTO-GD-0192

allowed values is defined in the type of each parameter. The optional raises
expression indicates that user-defined exceptions can be signalled to terminate the
request. The optional context expression provides additional request context
information to the object implementation on an operation-specific basis.

4.5 Object Implementation

The object implementation carries out the computational activities needed to effect the
behaviour of requested services. Essentially, the CORBA implementation model
consists of an execution model and a construction model.

The execution model describes how services are performed. A requested service is
performed by executing a code segment, or called a method, that operates upon some
data. The data represents a component of the state of the computational system, which
may be changed as a result of the execution.

The construction model describes mechanisms for realising behaviour of requests.
These mechanisms include definitions of object state and methods, and definitions of
how method dispatch is performed. In particular, this model describes how object
implementations are constructed, including the information needed to create an object
so as to provide an appropriate set of services.

5. Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) is a first step by the Object
Management Group towards achieving application portability and interoperability
across heterogeneous computing platforms. It is a standard for the development and
deployment of applications in distributed, heterogeneous environments. CORBA 1.1
was first introduced in 1991. In CORBA 2.0, adopted in December 1994, true
interoperability is defined by specifying how ORBs from different vendors can
interoperate.

A client makes a request for a service provided by an object implementation through
the Object Request Broker (ORB). The client is not required to care about the location of
the object implementation, its programming language, or any other details. To support
portability and interoperability, the ORB is responsible for all of the mechanisms
required to locate the object implementation, and to prepare the object implementation
to receive the request and its data. Figure 4 shows the main components of the ORB
architecture and their interconnections.

The client makes a request using either the Dynamic Invocation Interface (DII) or an
OMG IDL stub. The client can also directly interact with the ORB through the ORB
Interface for some functions. Similarly, the object implementation receives a request

10

DSTO-GD-0192

IP ORB dependent interface interface identical for all ORB implementations

Stubs and skeletons for each object type ||||| there may be multiple object adaptors

Figure 4: The Structure of Object Request Broker Interfaces

either through the OMG IDL skeleton or through a Dynamic Skeleton Interface (DSI).
The object implementation may call the Object Adaptor and the ORB Interface for the
ORB services.

Having access to the object reference as a handle to the object implementation, the
client initiates the request by statically calling the IDL stub, or by constructing the
request dynamically through the Interface Repository. An OMG IDL stub is the specific
stub depending on the interface of the target object, whereas the DII interface is
independent of the interface of the target object, which therefore can be used even
without thorough knowledge of that interface. Nevertheless, both the static and
dynamic invocation methods generate the same request semantics to the object
implementation.

The ORB locates the target object, transmits parameters and transfers control to the
object implementation through an IDL skeleton or a dynamic skeleton. Defining the
interface of an object in IDL generates an IDL skeleton that is specific to the interface
and the object adaptor. The object implementation information provided at installation
time is stored in the Implementation Repository, which is available for use during
request delivery.

Figure 5 shows how interface and implementation information is made available to
clients and object implementations. The interface is defined in OMG IDL and/ or in the

11

DSTO-GD-0192

IDL
Definitions

Implementation
Installation

Interface
Repository

Stubs Skeletons

"\

Client

Implementation
Repository

Object Implementation

S

Figure 5: Interface and Implementation Repositories

Interface Repository. The client stubs and the object implementation are generated
from the IDL definition of the interface.

5.1 Object Request Broker

CORBA is designed to support different object mechanisms by structuring the ORB
with components above the ORB core. The ORB core is actually the ORB component
that moves a request from a client to the appropriate adaptor for the target object, thus
providing the basic representation of objects and communication of requests. Multiple
ORB implementations may have different representations for object references and
different means of performing invocations. The ORB core is defined by its interfaces
that can mask the differences between ORB implementations. ORB cores, together with
the IDL compilers, repositories, and various object adaptors, provide a set of services to
clients and implementations of objects that have different properties and qualities.
While working together, different ORB implementations must be able to distinguish
their object references.

5.1.1 Example ORBs

A number of ORB implementations are possible within the specifications of CORBA. A
particular ORB, however, might support multiple options and protocols for
communication.

Client- and implementation-resident ORBs are ORBs that are implemented in routines
resident in the clients and implementations. These routines collectively provide the
ORB functionality to each client or implementation process. To facilitate requests, the

12

DSTO-GD-0192

Machine A Machine B

Process 1 Process 2

' Client ' Obj. Impl.

r Stub > Skeleton

Comm.
^ J ^ J/

Figure 6: Client- and Implementation-resident ORB [4].

Machine A Machine B

Process 1

•'*■

Process 2

' Client Obj. Impl. m

\

Stub Skeleton

Process

c
,3

01 EtB (

1 Process 4

ORB ^

\ "- — '
) V

Figure 7: Server-based ORB [4]

stubs in the client either use a location-transparent inter-process communication
mechanism or directly access a location service to establish communication with the
object implementations. This is illustrated in Figure 6.

A server-based ORB is one that centralises the management of an ORB within one or
more servers. All clients and implementations communicate via the interaction with
these servers which facilitate the routing of requests from clients to implementations.
Figure 7 shows a server-based ORB.

In a system-based ORB, the ORB functionality is provided as a basic service of the
underlying operating system to enhance security, robustness, and performance. A
variety of optimisations can be implemented because the operating system knows the

13

DSTO-GD-0192

location and structure of clients and implementations, such as avoiding marshalling3

when both are on the same machine.

A library-based ORB keeps implementations of light-weight objects in a library. In this
case, the stubs are the actual methods. It is assumed that a client program can get
access to the data for the objects and that the implementation trusts the client not to
corrupt the data.

5.2 Object References

An object reference is an opaque representation to specify an object within an ORB.
Both clients and object implementations use object references upon which requests are
issued. Object references are uniform only within an ORB implementation. The
representation of an object reference handed to a client is only valid for the lifetime of
that client. Different ORB implementations can provide different representations of
object references. Nevertheless, all ORBs must provide the same language mapping to
an object reference for a particular programming language, independent of a particular
ORB. Such a mapping insulates both clients and object implementations from the
actual representation.

Whenever an object reference is passed across ORBs, the originating ORB must create
an Interoperable Object Reference (IOR) across object reference domain boundaries.
This IOR data structure comprises a collection of object-specific tagged profiles. These
profiles encapsulate all the basic information that the protocol in a foreign ORB needs
to identify an object.

5.3 Clients

A client object requests service from another object using an object reference, an
operation name, and a set of parameters. An object reference serves as a handle of the
target object on which the operation is requested. A client makes a request from within
the application code which uses object-type-specific stubs as library routines in the
program. The client passes a language-specific data type as an object reference to the
stub routines to initiate an invocation.

Once the stub routine is called to perform the invocation, the stub interacts with the
ORB by mapping the object reference for the target object to the object reference
representation in the ORB implementation. This is shown in Figure 8. The ORB is
responsible for locating the object implementation, and for managing the transfer of the

3 Marshalling is the process of packing one or more items of data into a message buffer, prior to
transmitting that message buffer over a communication channel. The packing process not only
collects together values which may be stored in non-consecutive memory locations but also
converts data of different types into a standard representation agreed with the recipient of the
message.

14

DSTO-GD-0192

Client Program

Language-dependent object references

ORB object references

Dynamic
Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B

Figure 8: Structure of a Typical Client

request and results, if any, between the client and the object implementation An
exception is returned in the event of an error or an incomplete invocation

When the target object was undefined at the compile time of the client object, it is
possible that the stubs of the object implementations are not available to the client
code. In this case, the client program provides additional information to name the type
of the object and the method being invoked. Invocations on target objects are
performed via the Dynamic Invocation Interface. The construction of this request
however involves a sequence of calls to specify the parameters and to initiate the
invocation.

5.4 Client Stubs

On behalf of clients, stubs are local proxies for potentially remote objects, making
remote invocation look similar to local invocation by hiding the details of the
underlying ORB from the application programmers. Clients issue requests from within
their host programming languages through stubs, invoking remote operations defined
as part of the target object interface. A mapping from an IDL definition generates a
stub for each interface within the native programming language. Object-oriented
programming languages may simply view CORBA objects as programming language
objects. For the mapping of a non-object-oriented language, a programming interface to
a stub routine is required for each interface type, providing access to a particular IDL-
defined operation on a particular object. As the client stubs make calls on the rest of the
ORB using interfaces that are private to the particular ORB core, different ORBs may
require correspondingly different stubs. In this case, it is necessary for the ORB and

15

DSTO-GD-0192

language mapping to cooperate to associate the correct stubs with the particular object
reference.

5.5 Dynamic Invocation Interface

The Dynamic Invocation Interface allows the dynamic construction of object
invocations. A client can directly specify the object to be invoked, the operation to be
performed, and the set of parameters for the operation through a call or a sequence of
calls. The Dynamic Invocation Interface is common to all objects and all operations. It
does not make use of the stub routines generated for each operation in each interface.
Information regarding the parameters and the operation itself is usually acquired from
the Interface Repository.

5.6 Interface Repository

The Interface Repository maintains persistent IDL definitions that are available at run
time. This information is used by the Dynamic Invocation Interface to issue requests on
object interfaces that were unknown when the client program was compiled. The ORB
itself also makes use of the Interface Repository services to perform requests. The
Interface Repository provides a persistent store for additional information associated
with interfaces to ORB objects. Examples are annotations and debugging information,
libraries of stubs or skeletons, and routines that can format or browse particular kinds
of objects.

5.7 Object Implementations

The actual state and behaviour of an object are encapsulated in an object
implementation. In the CORBA specification, only the necessary mechanisms for
invoking operations are defined. The implementation of an object is free to specify its
own procedures for activating and deactivating objects, access control, as well as
keeping persistent objects.

An object implementation interacts with an ORB to obtain services, as shown in Figure
9. Primarily, an object adaptor provides the object implementation an interface to ORB
services such as establishing the identity of the object implementation, and creating
new objects. When an invocation occurs, the ORB core, the object adaptor, and a
skeleton arrange to make the call to the appropriate method of the implementation.
The method can be called statically from the interface skeleton. Object references are
passed for which the call was made, together with parameters identifying the object
being invoked, and the particular method. Alternatively, a dynamic skeleton makes the
invocation possible even if static skeletons for each object interface type have not been
compiled. When the method is finished, output parameters or exception results are
returned back to the client.

16

DSTO-GD-0192

Object Implementation

Method for
Interface A

Up-call to
Method

T

Object data

Skeleton for
Interface A

ORB object references

Library Routines

Dynamic
Skeleton

Object adaptor
routines

Figure 9: Structure of a Typical Object Implementation

The ORB may be notified of the creation of a new object so that the ORB is able to
locate the implementation for that object. The implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not running.

5.8 Implementation Skeleton

Implementation skeletons are the structures, which actually invoke the methods
implemented as part of the object implementation. They are created from the IDL
definitions for each interface within a programming language. The skeleton is filled
with actual code that will be invoked when a request is received. The ORB calls a
particular operation through the specific skeleton. However, it is possible to write an
object adaptor that does not use skeletons to invoke implementation methods.

5.9 Dynamic Skeleton Interface

A Dynamic Skeleton Interface allows dynamic handling of object invocations to an
object implementation without the use of an implementation skeleton. Information
such as the operation name and parameters are determined by means of purely static
knowledge or dynamic knowledge through an Interface Repository.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code returns the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of

17

DSTO-GD-0192

Object Implementation

rInterface A'
Methods

Interface B
Methods

I private interface I

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton

Object
Adaptor
Interface

public interface

ORB Core

private interface

Figure 10: Structure of a Typical Object Adaptor

the Dynamic Skeleton Interface may vary substantially from one programming
language mapping or object adaptor to another.

5.10 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and
activate the object implementations necessary to fulfil a request. The Implementation
Repository also stores additional information associated with the object
implementations. Examples are debugging information, administrative control,
resource allocation, and security. The Implementation Repository is specific to an
operating environment, because it is used in the construction and activation of the
object implementations.

5.11 Object Adaptors

An object implementation primarily accesses ORB services through an object adaptor.
When a request comes in from the ORB core, the object adaptor provides the required
services and helps deliver the request to the skeleton for method invocation. An object
adaptor is implicitly involved in invocation of the methods through the skeletons. It
publishes a public interface to the object implementation and a private interface to the
interface skeleton. An object adaptor itself makes use of a private ORB-dependent
interface, as shown in Figure 10.

The functions that an object adaptor performs include: generation and interpretation of
object references, method invocation, security of interactions, object and
implementation activation and deactivation, mapping object references to the
corresponding object implementations, and registration of implementations.

A number of object adaptors can be envisioned for different groups of object
implementations based on object granularities, lifetimes, policies, implementation

18

DSTO-GD-0192

styles, and other properties. Each object adaptor is typically designed to support a
range of object implementations.

Object adaptors are primary service providers for object implementations. Object
adaptors can be specialised and only a Basic Object Adaptor (BOA) is defined in the
CORBA specification. The BOA can be used for most ORB objects with conventional
implementations. It provides a small amount of persistent storage for each object,
which can be used as a name or identifier for other storage, for access control lists, or
other object properties. Examples of special-purpose adaptors are the library object
adaptor for objects that have library implementations, and the object-oriented database
adaptor to provide access to the objects in an object-oriented database.

5.12 ORB Interface

The ORB Interface is identical for all ORB implementations, providing operations
common across all objects. This interface is mapped to the host programming
languages used by the clients and the object implementations.

6. OMG Interface Definition Language

The OMG Interface Definition Language (IDL) is used to define interfaces through
which a client is informed of the services supported by an object implementation. OMG
IDL is purely a descriptive language so that an interface is defined in a language-
neutral way. It enables potential clients to identify the available operations and their
invocation methods for a particular object implementation. An interface definition
written in OMG IDL completely defines the interface and fully specifies the operation
signatures, embracing a set of named operations and the parameters to those
operations. Hence in CORBA, the OMG IDL definitions are used to create the stubs
and skeletons, as well as to populate the Interface Repository.

To specify the parameter types and return types for operations, OMG IDL provides a
set of data types that are similar to those found in a number of programming
languages. It supports built-in data types such as long, short, float, double, char and
boolean. The sizes, byte ordering and interpretation of all these basic types are
precisely defined to ensure interoperability across heterogeneous platforms. OMG IDL
also supports constructed types such as struct and discriminated union, and template
types such as string and sequence whose exact characteristics are defined at declaration
time. This IDL type hierarchy is covered in Section 4, where Figure 3 illustrates all the
legal values. These are used in operation declarations to define argument types and
return types. Operations are also specified in interface declarations to identify the
services provided by objects.

19

DSTO-GD-0192

More importantly, interfaces are used as object reference types to describe CORBA
objects. An operation can take object references as arguments and return the
appropriate object references. In addition, OMG IDL provides interface inheritance,
allowing derived interfaces to inherit the operations and types defined in the base
interfaces. All IDL interfaces are implicitly derived from a root interface called Object
defined in the CORBA module, which provides services common to all ORB objects.

CORBA objects, expressed in OMG IDL, are mapped into particular programming
languages or object systems according to the specifications of the object interfaces. A
client uses the IDL interface specifications, but the actual call is done in the native
programming language, as a result of mapping of the IDL interfaces to the
programming language. As expected, the mapping of OMG IDL to a particular
programming language is the same for all ORB implementations. This includes
definition of the language-specific data types and procedure interfaces to access objects
through the ORB.

OMG IDL obeys the same lexical rules as C++. It has similar syntax and the grammar is
actually a subset of the C++ grammar with additions necessary for distributed
invocations. The C++ concept of class roughly corresponds to the concept of an IDL
interface.

6.1 IDL Specifications

An entire IDL file forms a naming scope4 within which one or more IDL specifications
are contained. An IDL specification consists of one or more type definitions, constant
definitions, exception definitions, interface definitions, or module definitions.
Identifiers of types, constants, attributes, operations, and exceptions can only be
defined once in a naming scope. However, identifiers can be redefined in nested
scopes.

An IDL module provides a namespace to group a set of interfaces, allowing for scoping
of definition names to prevent name clashes. An interface defines a set of operations (or
methods) without the actual implementation, which a client can invoke on an object.
One or more exceptions can be declared to indicate an operation failure. An interface
may have attributes for which the implementation automatically creates get and set
operations. An interface can be derived from one or more interfaces, thus supporting
multiple interface inheritance. An operation signature designates the parameters and
the results that the method returns. In particular, the mode of a parameter indicates
whether the value is passed from client to server {in), from server to client {out), or both
{inout).

4 The scope of an identifier is the region of a program source that usually extends from the place
where it is declared to the end of the smallest enclosing block. If a name is not resolved within a
particular scope, it is searched for in successively expanding outer scopes.

20

DSTO-GD-0192

module MyAnimals ~+ —
{ '

// Class Definition of Dog
interface Dog : Pet, Animal •<-
{

attribute integer age;

Defines a naming context

Defines a CORBA class

exception Notlnterested {string explanation};

}

void Bark (in short how_long) -* j Defines a method ;
raises (Notlnterested); ' "

void Sit(in string where)
raises (Notlnterested);

void Growl(in string at_whom)
raises (Notlnterested);

// Class Definition of Cat
interface Cat : Animal
{

void Eat();
void HereKittyO;
void Bye();

}
} // End MyAnimals

Figure 11: IDL Module MyAnimals with Tzuo Interfaces, Dog and Cat [2]

An interface definition is composed of a header and a body. The header specifies the
name of the interface and an optional inheritance structure. The body contains
declarations of constants, types, exceptions, attributes, and operations. Figure 11 shows
an example of an IDL file [2] with two interfaces, Dog and Cat, defined in a module
called MyAnimals. Interface Dog is derived from two base interfaces, Pet and
Animal. Dog includes a new declaration of attribute called age, for which the
implementation automatically provides get and set methods. Three methods are
supported in Dog: Bark, Sit, and Growl, but an exception may be raised when the
dog is not in the mood to obey. Likewise, Interface Cat is derived from Animal, and
supports three methods: Eat, HereKitty, and Bye.

6.2 Programming Language Mappings

Interfaces are only defined in the OMG IDL specifications. Actual client and object
implementations still have to be done in programming languages. Language mappings
determine how OMG IDL features are mapped to the facilities of a given programming
language. Hence, a procedure or function that a client invokes from within its
programming language is mapped to a corresponding IDL operation. A request is then
initiated to the object implementation via the ORB and the object adaptor.
Subsequently, the IDL skeleton calls the requested procedure of the object
implementation in its native programming language.

21

DSTO-GD-0192

Each programming language mapping includes a static mapping of interfaces, and a
mapping of the Dynamic Invocation Interface (DII). The static mapping translates IDL
specifications and CORBA-defined interfaces to the programming language stubs. This
stub declaration is then compiled in the programming code of a client to originate a
particular request to the object implementation. This static mechanism requires pre-
compilation. The DII however allows requests to be dynamically built even before the
interfaces for the operations are defined. Essentially, all operations are viewed as
common constructs that have a name, a list of parameters, and an object reference. The
DII thus provides a dynamic mechanism by which any operation can be invoked.

Language mappings provide means of expressing IDL data types, constants, object
references, operations, attributes, and exceptions, so that the interfaces to the ORB are
characterised in different programming languages. A language mapping involves
definition of the language-specific data types and procedure interfaces to access objects
through the ORB. In any case, a particular mapping of IDL to a programming language
should have similar structure with the same set of features for all ORB
implementations. Different programming languages may access CORBA objects in
different ways. Object-oriented languages may perceive CORBA objects as their own
programming language objects, whereas non-object-oriented languages may prefer to
hide the exact ORB representation.

7. Static Method Invocation

As mentioned above, CORBA supports two types of client-server invocations: static,
and dynamic method invocations. The static invocation is a very natural form of
programming that appears to be like remote procedure call (RPC). The static interface
is directly generated in the form of stubs by the IDL pre-compiler. All the methods are
specified in advance and are known to the client and the server via client-side stubs
and server-side skeletons as proxies, also called surrogates. The particulars of the
remote operations are bound to the client code written in high-level language. During
the delivery of the invocations to the server, the ORB takes care of all the details
involved. Essentially, this client code written to perform static invocations is highly
portable across multi-vendor ORBs.

The dynamic method invocation provides a more flexible environment than the static
counterpart. Services are only discovered at run time. New methods added to the
object implementation do not enforce corresponding changes in the client code.
Nevertheless, most applications do not require this level of flexibility and are better off
with static stub implementations. The primary advantage of the static invocation is its
simplicity, type safety, and efficiency. In fact, it is much easier to program static stubs
because remote methods are simply invoked by names and parameters.

22

DSTO-GD-0192

7.1 Stubs and Skeletons

The static method invocation is performed through both client-side stubs and server-
side skeletons generated by OMG IDL compilers. A stub is a mechanism that
effectively creates and issues requests on behalf of a client, while a skeleton is a
mechanism that delivers requests to the CORBA object implementation. IDL stubs and
skeletons are built directly into the client application and the object implementation,
respectively. Not surprisingly, stubs and skeletons are interface-specific because they
are directly translated from OMG IDL specifications.

An IDL stub essentially is a stand-in within the local process for the actual target object,
so that the client invokes operations of remote server objects just as operations of local
objects. The IDL stub is the static invocation interface, representing a language
mapping between the client language and the ORB implementation. A set of stub
routines is generated from IDL interface specifications and linked into a dient
program. Each of these stub routines actually corresponds to a particular target object.
Subsequently, the client invokes an operation on a remote server object by calling the
corresponding stub routine for the target object.

An IDL stub works directly with the client to marshal a request. This involves the
conversion from the representation of the request in the programming language to one
suitable for transmission over the connection to the target object. On arrival at the
server-side ORB, the request is unmarshalled and dispatched to the target object
implementation in its programming language form.

7.2 Generating Interface Stubs and Skeletons

Interface stubs and skeletons are generated in the process of creating server classes.
Figure 12 illustrates the procedure to prepare server classes for the static method
invocations. These following steps are typical of most CORBA implementations [2]:

1. Define object classes in IDL specification, detailing the types of objects, attributes,
methods, and parameters. These are the interfaces a server exports to its clients.

2. Run the IDL files through a CORBA-compliant language pre-compiler, producing
language skeletons for the server classes.

3. Add the implementation code to the methods in the skeletons.

4. Compile the implementation code through a CORBA-compliant compiler,
generating at least three types of output files:

• import files - describe the objects to an Interface Repository;

• client stubs for the IDL-defined methods - these stubs are invoked by a client
program that needs to statically access IDL-defined services via the ORB;

• server skeletons - call the methods on the server.

23

DSTO-GD-0192

Create IDL Definitions

Skeletons

Add Server Implementation Code

Compile
Instantiate / Object

^—I Adaptor

Interface
Repository

Client IDL
Stubs

Client

\ /
—X M .

Server IDL
Skeletons

1. r

Object
Implementations

' "

Servei

Implementation
Repository

Figure 12 : From IDL to Interface Stubs [2]

5. Bind the class definitions to the Interface Repository, so that programs can access
the IDL information at run time.

6. Register the run-time objects with the Implementation Repository, so that object
classes supported on a particular server are known. This information is used by the
ORB to locate active objects or to request the activation of objects on a particular
server. The object adaptor records in the Implementation Repository the object
reference and type of any object it instantiates on the server.

7. Instantiate the objects on the server at startup to service remote client method
invocations. Run-time objects are instantiated by an object adaptor, as instances of
the server application classes.

7.3 Activating Static Invocation

A sequence of events are involved to establish a static invocation between a client and
an object implementation across the ORB. The procedure to activate the static method

24

DSTOGD-0192

Client Stub ORB Object Adaptor Implementation

©

<D-

<S>

Skeleton

®

(D

Hgwre 23 : Activating Static Invocation [5]

invocation is illustrated in Figure 13. The client first calls a remote method through the
client stub (Step 1). The ORB delivers the request to the object adaptor, which then
activates the object implementation (Step 2). The object adaptor is informed that the
object implementation is active and available (Step 3). Upon this confirmation, the
object adaptor forwards the request to the implementation via its skeleton (Step 4).
Finally, the request is serviced in the object implementation, which returns the result, if
any, or an exception in the event of an abnormality, back to the client through the ORB
(Step 5).

8. Dynamic Invocation and Dispatch

CORBA supports dynamic invocation so that a client can dynamically invoke the
methods of any target object at run time without pre-compiled stubs. A client only
discovers interface-related information at invocation time. This dynamic environment
considerably facilitates the flexibility and extensibility of remote operations. Hence,
servers can offer new services to any client whenever they become available. Similarly,
a client is able to use objects whose types or operations might not be known when the
client was compiled. Dynamic invocation is useful for interactive programs such as
browsers, management support tools and distributed debuggers. These applications
can therefore invoke requests on any object without having compile-time knowledge of
the object interfaces.

In the CORBA specification, two interfaces are defined to support dynamic invocation:
the Dynamic Invocation Interface (DII) for dynamic client request invocation, and the
Dynamic Skeleton Interface (DSI) for dynamic dispatch to objects. These two generic
interfaces are provided directly by the ORB. They are identical for all ORB

25

DSTO-GD-0192

implementations, and thus not dependent on the OMG IDL interfaces of objects being
invoked.

8.1 Dynamic Invocation Interface

The Dynamic Invocation Interface (DII) is a generic client-side stub capable of
forwarding any request to any object by run-time interpretation of request parameters
and operation identifiers. It allows a client application to issue requests for any
interface, even if that interface was unknown at the time the application was compiled.
Importantly, a server receiving an incoming invocation request does not know whether
the client which sent the request used the static or dynamic approach to compose the
request.

The dynamic invocation services are part of the CORBA Core5. The methods required
to prepare for dynamic invocations are collected within four interfaces in the CORBA
module. These are CORBA::Object interface, CORBA::Request pseudo-object interface,
CORBA::NVList pseudo-object interface, and CORBA::ORB pseudo-object interface. In
addition, Interface Repository objects are required to construct a remote invocation.

Pseudo-object interfaces contain serverless object types that do not have object
references. These operations are defined in IDL for convenience. The Appendix
presents further details of ORB pseudo-object interfaces.

8.1.1 Obtaining an Object Reference

To make dynamic invocations on an object, a client has to find a target object and
obtain its reference. This target object reference is used to retrieve the object interface.
Subsequently, a request is dynamically constructed and populated with the object
reference, the operation name and the parameters.

Remote objects can be discovered by name using the CORBA Naming Service (the
CORBA White Pages), or via the CORBA Trader Service (the CORBA Yellow Pages).
Once a client discovers the target object, the Dynamic Invocation Interface is able to
invoke the operations.

When a reference for a target object is known, a client can obtain the target interface
name by invoking the get_interface () operation on its reference provided by the
CORBA::Object interface. This call returns a reference to an InterfaceDef object located
inside an Interface Repository (IR). This reference is an entry point from which the
client can further obtain the method description from the IR by issuing the
lookup_name () and describe () operations.

5 The CORBA 2.0 Core contains six components, namely, IDL, ORB interfaces, ER, Du, DSI, and
BOA. In fact, this category corresponds to CORBA 1.2 minus the IDL C language mapping, plus
modifications resulting from the CORBA 2.0 Requests for Proposal (RFPs) and requirements of
Common Object Services Specifications (COSS) 2 Object Services.

26

DSTO-GD-0192

8.1.2 Constructing a Request

Parameters in a request are supplied as an NVList pseudo-object that is a list structure
of type NarriedValue. An empty NVList is created by invoking createlist () on a
CORBA::ORB object. This parameter list is progressively populated by calling
add_item () and add_value () provided by the CORBA::NVList interface/for each
argument in the method. Alternatively, the create_operation_list () operation
allows the ORB to create an NVList with the parameter descriptions. The client is only
required to set each argument value by invoking add_value ().

After the argument list is prepared, the client can create a dynamic request for the
target object by calling create_request () on the object reference with the name of
the method, the NVList, and the return value.

To alleviate the laborious task of creating a separate argument list, a client can directly
create an empty Request object by calling request () on the object reference with the
name of the method. The Request object is populated by progressively invoking
add_arg() and add_value() for each parameter. This technique of creating the
Request object is more convenient for invoking methods that do not require
parameters.

8.1.3 Invoking the Request

Once a Request pseudo-object has been created and argument values have been
embodied within it, the client can submit the request in one of three ways: synchronous
invocation, deferred synchronous invocation, or one-way invocation.

1. Synchronous Invocation

This standard invocation mode is equivalent to an RPC-like synchronous interaction
between client and server, in which a request is invoked by calling the invoke ()
operation. The client is however blocked until the response is returned from the
object implementation.

2. Deferred Synchronous Invocation

The request is invoked by calling the send() operation which returns control
immediately to the client without waiting for the response. This allows the client to
continue processing in parallel with the invoked operation. By issuing
getresponse () at a later time, the client can check to determine if a response is
available, and if so, the result is collected. Deferred synchronous operations are
useful to improve the throughput of a client, particularly in the case of a number of
independent long-running invocations.

3. One-Way Invocation

27

DSTO-GD-0192

A one-way invocation is specified when the client invokes the request using the
send () operation with invoke_f lags set to INV_NO_RESPONSE. In this case, no
response is expected and there is no way to inform the client of any error.

In addition, the send_multiple_requests() operation provided by the
CORBA::ORB interface allows deferred synchronous invocations of multiple requests.
One-way operations are specified by INV_NO_RESPONSE in the invoke_f lags.

At present, only the DII provides deferred synchronous and one-way request
invocations. Table 1 compares the static and dynamic invocations in relation to various
communication styles, though this added capability will soon be available to remote
requests through static stubs [6]. Nevertheless, the flexibility of the DII mechanism
over static stubs comes at a price. Preparing a dynamic request involves defining the
target object, method, and parameters through a series of calls to the ORB core services.
In particular/the ORB may transparently access the IR to obtain information about the
types of the arguments and return value, requiring several remote invocations. In
contrast, static invocations do not suffer from the overhead of accessing the IR since the
type information has already been compiled into the application. A DII request is
therefore less efficient than an equivalent static invocation. A DII request with no
arguments and a void return type requires a minimum of two function calls [7]. As a
benchmark, comparing the average response times of static versus dynamic Ping
invocations shows that a dynamic invocation is about 40 times slower than its static
counterpart [2]. In fact, most of the overhead was spent on accessing an IR when a
request was prepared.

Table 1: Invocation Types versus Communication Styles

Communication Styles
Synchronous

Deferred Synchronous
One-way

Static Invocation Dynamic Invocation
Yes Yes
No Yes
Yes Yes

8.2 Dynamic Skeleton Interface

The Dynamic Skeleton Interface (DSI) is the server equivalent of the client-side DII,
which defines an interface between the ORB and an object implementation through a
dynamic skeleton. The DSI enables an ORB to deliver a request to an object
implementation that does not have compile-time knowledge of the type of object it is
implementing. It provides a run-time binding mechanism for servers that need to
handle incoming method calls for components that do not have IDL-based compiled
skeletons. The DSI is useful for a certain class of applications, such as interactive
software development tools based on interpreters, distributed debuggers and inter-
ORB bridges.

28

DSTO-GD-0192

Just as the DII allows clients to invoke requests without having access to static stubs,
the DSI allows servers to be written without having skeletons for the objects being
invoked compiled statically into the program. Usually, an object implementation is
connected to the ORB through a static skeleton which is specially built for each object
type to match the IDL-defined methods implemented. This static skeleton activates the
methods to service requests coming through the ORB and the object adaptor. A
dynamic skeleton can replace a static skeleton for any type by serving the same
architectural role as a type-specific, IDL-based skeleton. Specifically, a dynamic
skeleton examines parameter values in incoming requests to determine the target
object and method.

The DSI receives detailed specifications of the operation to be invoked as arguments.
Without prior knowledge of the object type, all incoming requests through the DSI are
prepared using the Dynamic Implementation Routine (DIR) before connecting to an
object implementation The arguments that are delivered to a DIR consist of an
arbitrary object reference and a request packaged as a ServerRequest pseudo-object.
The ServerRequest pseudo-object is analogous to the Request pseudo-object in the DII.

9. The Interface Repository

The Interface Repository (IR) is a run-time database that contains the interface
specifications of each object an ORB recognises. It provides for the storage, distribution,
and management of a collection of related interface definitions specified in OMG IDL.
The ORB can use these object definitions to interpret and handle the values provided in
a request, such as type checking of method signatures, and checking of interface
inheritance graphs. Also, the IR is a convenient place in the ORB for developers to
stash additional interface information such as debugging information, stub and
skeleton libraries.

A CORBA object becomes self-describing after its interface information is installed in
the IR. An ORB may access multiple IRs. Conversely, an IR may be accessed by
multiple ORBs. In particular, a multi-ORB federation of interface repositories enables
objects to go across heterogeneous ORBs.

9.1 The Containment Hierarchy of Interface Repository Classes

Interface definitions are represented as sets of objects that contain descriptions for the
operations, exceptions, context objects, and parameter types. CORBA metadata
information is grouped into modules that represent naming spaces. The IR uses
modules as a way to navigate through those groups by name using a hierarchical
traversal approach.

29

DSTO-GD-0192

In the IR, each interface is represented by an interface object. Although IR operations
and the conceptual framework are object-oriented, a non-object-based implementation
of the IR can also provide an object-oriented interface to the users. An interface object
maintained in the IR can be one of the following IDL structures:

• Repository: a top-level organisational object as the root for all the modules
contained in a repository namespace.

• ModuleDef: a logical grouping of objects representing interfaces, types, constants,
exceptions, and other ModuleDef objects.

• InterfaceDef: an object interface containing attributes, constants, types, operations,
and exceptions.

• OperationDef: an operation or method on an object interface, containing parameters
and exceptions raised by this operation.

• ParameterDef: an object representing a parameter of an operation.

• AttributeDef: an attribute of an interface.

• ConstantDef: an object representing a named constant.

• ExceptionDef: an exception that can be raised by an operation.

• TypeDef: a type definition äs part of an IDL definition.

Figure 14 illustrates the possible containment relationships between these object types.
In particular, instances of the Repository contain other objects. Instances of the
ModuleDef, InterfaceDef, and OperationDef classes are both contained and containers,
whereas instances of the ConstantDef, TypeDef, ParameterDef, and ExceptionDef
classes are always contained in other objects.

In the Interface Repository class hierarchy, three abstract superclasses are defined:
IRObject, Contained, and Container. All IR objects inherit from the IRObject interface
that provides an operation for identifying the actual type of the object. Objects that are
containers inherit navigation operations from the Container interface. These are the
Repository, ModuleDef, and InterfaceDef classes. The Contained interface defines the
behaviour of objects contained in other objects, which is inherited by all the IR objects
except the Repository class.

Besides supporting dynamic invocation, the IR can also be used as a source for
generating static support code for CORBA-based applications. Both the static and
dynamic invocation interfaces can use information stored in the IR to facilitate type
checking of objects at run time.

30

DSTO-GD-0192

Repository

ConstantDef TypeDef ModuleDef ExceptionDef InterfaceDef

ConstantDef TypeDef InterfaceDef ModuleDef ExceptionDef

ConstantDef TypeDef OperationDef ExceptionDef AttributeDef

ParameterDef ExceptionDef

Figure 14: Containment Hierarchy for the Interface Repository Classes [2]

9.2 Interface Retrieval

Using an Interface Repository, a client is able to locate an object unknown at compile
time, and inquire about its interface. Based on this information, the client can construct
a request to the selected target object through the Dynamic Invocation Interface. There
are three ways to retrieve interface information from the Interface Repository:

1. An InterfaceDef object can be retrieved from any valid object reference using the
get_interface() operation defined in the CORBA::Object interface. Since all
interfaces are derived from CORBA::Object, every object therefore supports the
get_interf ace () operation. The target interface is fully described in the
InterfaceDef object.

2. An interface can be located by navigating through the module namespace if the
name of the interface is known. Starting at the root module of the repository, the
desired module is located by traversing over all of the module definitions. The
target module is then opened and iterated in the same manner over all the
definitions. When the entry is found, invoking the
InterfaceDef::describe_interface() operation returns the metadata that
describes the interface.

3. A Repository object can be used to look up any definition either by name or
identifier. Given a particular Repository ID, an InterfaceDef object can be located by
invoking the Repository::lookup_id () operation. The metadata about the interface
can be obtained from this InterfaceDef object.

31

DSTO-GD-0192

9.3 Federated Interface Repositories

It is possible to create federations of interface repositories operating across multiple
ORBs. To avoid name clashes and to synchronise definitions across ORBs and
repositories, unique IDs, called Repositoryids, are assigned to global modules,
interfaces, constants, typedefs, exceptions, attributes, operations, and parameters.
Using these global repository IDs preserve the identity of an interface across ORB and
repository boundaries.

The format of the Repositoryid is a short format name followed by a colon (":")
followed by characters according to the format. Three formats are defined in CORBA
2.0 specification: the OMG IDL format, the DCE Universal Unique Identifier (UUID)
format, and a local format.

9.3.1 OMG IDL Format

IDL scoped names are used in the OMG IDL format for Repositoryids. An optional
unique prefix, major and minor version numbers are also included. This format
consists of three components separated by colons ":". The first component is the format
name, "IDL". The second component is a list of identifiers separated by "./" characters.
The first identifier on the list is a unique prefix, and the rest are the IDL identifiers that
make up a scoped name. The third component consists of major and minor versions in
decimal format separated by a period ".".

For example, a valid Repositoryid for the interface Cat in the module MyAnimals
shown in Figure 11 is "IDL:DogCatInc/MyAnimals/Cat/: 1. 0". An organisation
name, DogCatlnc, is taken as a unique prefix in this case [2].

9.3.2 DCE Universal Unique Identifier (UUID) Format

The DCE UUID format for Repositoryids consists of three components separated by
colons ":". The first component is the format name "DCE", followed by the printable
form of the UUID as the second component. The third component is a minor version
number in decimal format. A UUID is a globally unique number in DCE generated
using the current date and time, a network card ID, and a high-frequency counter. An
example of a DCE Repositoryid is "DCE: 700dc518-0110-llce-ac8f-
0800090b5d3e:l".

9.3.3 Local Format

Only for use in an isolated repository, the local format for Repositoryids consists of
the format name "LOCAL", a colon ":", followed by an arbitrary string. This format is
intended for short-term use such as in a development environment. A simple example
to generate unique local IDs is making use of consecutive integers.

32

DSTO-GD-0192

10. The ORB Interface

The ORB Interface is the interface to the ORB functions to be accessed directly by both
the client-side and the implementation-side architecture. These operations are the same
for all ORBs and thus must be supported by any ORB implementation.

The operations are implemented in the ORB-based environment. Some of these
operations appear to be on the ORB, others appear to be on an object reference. These
ORB-implemented operations are described as operations on objects for model
consistency. The concept of modelling all functions as being performed by objects
allows all ORB functions to be defined as operations in IDL interfaces.

The ORB interface also defines additional operations for creating lists and retrieving
the default context used in the Dynamic Invocation Interface.

10.1 Converting Object References to Strings

An object reference is opaque and ORB-dependent, which is not, however, a
convenient characteristic for persistent storage. Besides, object references cannot be
passed from one application to another. To facilitate storage and communication of
object references, the ORB Interface provides the operation ob j ect_to_string () for
converting object references to strings that a client can store or transmit. The
subsequent operation string_to_ob j ect () returns the original object reference.

10.2 Object Reference Operations

The ORB Interface supports additional operations that can be applied to any object
reference. These operations on object references are directly implemented by the ORB,
not by the object implementation that the object reference refers to. These operations
are defined as part of the Object interface.

The create_request () operation creates a Request pseudo-object for an object. The
get_interf ace () operation returns an object in the Interface Repository associated
with the object, which can be further used to extract meta-information regarding the
object type. The get_implementation() operation returns an object in the
Implementation Repository that describes the implementation of the object.

The duplicate () operation creates an additional object reference to a particular
object. The release () operation reclaims the storage of an object reference which is
no longer used by a program. The isnil () operation tests an object reference for
referencing no object, while the isa () operation determines if an object is really an
instance of a shared type identifier. The nonexistent () operation tests whether an
object has been destroyed.

33

DSTO-GD-0192

To efficiently manage object reference identity, two identity-related operations are
provided. The hash() operation produces an internal hash value for an object
reference. Two object references are not identical if they hash differently. The
is_equivalent () operation determines if two object references are equivalent. Two
object references are equivalent if they are identical or they refer to the same object.

11. The Basic Object Adaptor

An object adaptor is the main interface through which object implementations access
most ORB services and the ORB core. It isolates object implementations from the ORB
core using three kinds of interfaces: an ORB-specific interface to the ORB core, an ORB-
specific interface to the implementation skeletons, and a public interface to the object
implementations. An object adaptor acts on behalf of the server objects to monitor the
ORB core communication services, and to accept requests for service. It is also a service
layer between the implementation skeletons and the ORB core. An object adaptor is
primarily responsible for activating and deactivating objects and implementations. In
addition, it provides the run-time environment for generating object references,
method invocation, implementation registration, instantiating server objects, and
request authentication.

A number of object adaptors are required to support a wide variety of object
implementations with differing characteristics such as granularities, lifetimes, policies,
and usage. The Basic Object Adaptor (BOA) is a general object adaptor fully defined in
the CORBA specification to support a wide range of CORBA-compliant object
implementations. Object adaptors can be tailored to provide the necessary functionality
for very specialised requirements. Examples of special-purpose object adaptors are the
library object adaptor for objects that have library implementations, and the object-
oriented database adaptor to provide access to objects stored in an object-oriented
database.

The Basic Object Adaptor (BOA) is packaged as the BOA interface, which provides the
following functions:

• generation and interpretation of object references;
• authentication of the principal making the call;
• activation and deactivation of the implementation;
• activation and deactivation of individual objects; and
• method invocation through skeletons.

An object implementation is registered in an Implementation Repository, which also
maintains platform-specific information describing the object implementation as
ImplementationDef objects. The BOA uses this information to start up the object server.

34

DSTO-GD-0192

Server
server activation

BOA

Figure 15: Shared Server Activation Policy [4]

The Implementation Repository also contains additional information for debugging
and administration. The BOA makes use of both the Interface Repository and the
Implementation Repository to associate object references with their interfaces and
implementations.

There are two kinds of activation that the BOA needs to perform as part of operation
invocation: implementation activation and object activation. Implementation activation
occurs when no implementation for a particular object is currently available to handle
the request. The BOA starts up the implementation using operating system facilities.
After the implementation initiates itself and responds with the BOA operation
impl_is_ready() or obj_is_ready () for per-object servers6, requests are
delivered to the implementation methods through the skeletons/Object activation
occurs when no instance of the object is available to handle the request, though the
implementation has already been activated.

According to the roles and interactions of the implementations, the objects, and the
BOA, the CORBA specification defines four policies that all BOA implementations
support for implementation activation:

1. Shared Server Activation Policy

In a shared server activation policy as illustrated in Figure 15, multiple active objects
of a given implementation share the same server. The BOA activates the server the
first time a request is invoked on any object implemented by that server. Once
initialised, the server notifies the BOA by calling impl_is_ready (). The BOA
delivers all subsequent requests to this server process. The BOA does not activate
another server process for that implementation. Upon receipt of the first request for
a particular object implemented by that server, the BOA calls the object activate
routine to ensure that the object is ready to service requests. When the server is
ready to terminate, it notifies the BOA by calling deactivate_impl (). The server
process can deactivate a particular object at any time by issuing

6 The CORBA specification defines the term server as a separately executable entity or process
that the BOA can start on a particular system. An object implements an interface, while a server
can contain one Or more objects.

35

DSTO-GD-0192

Server

BOA

server activation

obj_is_ready

method activation

deactivate_obj

Figure 16: Unshared Server Activation Policy [4]

deactivate_ob j (). Most CORBA servers operate under this policy by using
threads to run multiple objects concurrently within the same process [2].

2. Unshared Server Activation Policy

Figure 16 shows an unshared server activation policy in which only one object of a
given implementation can be active at any one time in one server. A new server is
activated the first time a request is invoked on the object. After the server initiates
itself, the BOA is notified using the objisready () operation The server
informs the BOA of its termination by calling deactivate_impl (). An unshared
server is applicable to situations where a dedicated object is required, such as a
printer or a robot on a manufacturing line.

3. Server-per-Method Activation Policy

A server-per-method activation policy is shown in Figure 17. Each invocation of a
method is implemented by a separate server being started, with the server
tenninating when the method completes. Several servers for the same object or even
the same method of the same object may be active simultaneously. As each request
starts a new server, the BOA is not informed whether the implementation is ready
or deactivated. This activation policy is useful for running scripts or utility
programs that execute once and then terminate [2].

server activation
+ method invocation"

method completes

+ server deactivates

Figure 17: Server-per-Method Activation Policy [4]

36

DSTO-GD-0192

4. Persistent Server Activation Policy

Under a persistent server activation policy, the server is activated by some other
means outside the BOA. The server still registers with the BOA using the
impl_is_ready() operation. The BOA treats the server as a shared server. It
sends activations for individual objects and method calls to a single process. If no
implementation is ready when a request arrives, an error is returned for that
request. A persistent server is just a special case of a shared server in which the
server activation is not performed by the ORB. DBMS, TP monitor, and web server
are expected to be good candidate applications for a persistent server activation
policy [2].

12. Inter-ORB Architecture

Direct ORB-to-ORB interoperability is possible when two ORBs in the same domain7

understand the same object references and IDL type structure. In any case, the success
of the CORBA approach to distributed object computing depends greatly on the ease
with which objects across different ORB implementations can call on one another's
services. Hence, the CORBA 2.0 specification defines a general ORB interoperability
architecture to support distributed objects across multiple heterogeneous ORBs.

ORBs from separate domains can only communicate through a bridge that maps ORB-
specific information from one ORB domain to the other, so that users of any ORB only
see their appropriate content and semantics. Essentially, this mapping mechanism is
achieved via two approaches: immediate bridging and mediated bridging. Immediate
bridging, or a full bridge, provides one-to-one protocol translation. This is a simple and
effective solution as long as the number of protocols remains small. Since it is not
practical to provide all possible kinds of full bridges among an increasing number of
ORB protocols, mediated bridging, or a half bridge, creates a common backbone
protocol between different ORB domains.

The CORBA 2.0 specification is designed to reduce the number of different
combinations of half bridges between ORB domains. The general ORB interoperability
architecture is based on the General Inter-ORB Protocol (GIOP), which specifies a set of
message formats and common data representations for ORB-to-ORB interactions. The
GIOP is a very basic inter-ORB protocol that serves as a common backbone over any
connection-oriented transport protocol. The GIOP defines all the ORB request and
reply semantics, and makes use of the common data representation for mapping IDL
data types into a flat, networked message representation. The GIOP is designed to be
simple and easy to implement while still allowing for reasonable scalability and
performance.

7 A domain is a distinct scope within which certain common characteristics are exhibited and
common rules are observed.

37

DSTO-GD-0192

The Internet Inter-ORB Protocol (HOP) specifies how the GIOP is built over a TCP/IP
network. The Internet is used as a backbone ORB through which other ORBs can
bridge. The HOP is basically TCP/IP with some CORBA-defined message exchanges
for out-of-the-box interoperability among TCP/IP based ORBs. For an ORB complying
with the CORBA 2.0 specification, support for the GIOP and the HOP is mandatory.
Such an ORB must either implement HOP natively or provide a half-bridge that
translates requests to and from the global HOP backbone.

The ORB interoperability architecture also defines Environment-Specific Inter-ORB
Protocols (ESIOPs) to allow ORBs to be built for special situations. ESIOPs are
optimised for particular environments such as the Distributed Computing
Environment (DCE). The DCE Common Inter-ORB Protocol (DCE-CIOP) is an ESIOP,
to be used by ORBs in environments where DCE is already installed. This allows for
easier integration of CORBA and DCE applications. Support for the DCE-CIOP or any
other ESIOP by a CORBA 2.0 ORB is optional.

13. Concluding Remarks

Use of the OMG Object Management Architecture (OMA) is now emerging as a key
strategy for supporting interoperable applications based on distributed interoperable
objects. Adoption of this approach is motivated by a desire to develop software with
reusable components that interact through well-defined interfaces. As the
communications heart of this architectural framework, CORBA provides a flexible
communication and activation substrate for distributed heterogeneous object
computing environments.

CORBA provides an object-oriented approach to integrating legacy applications
through well-defined interfaces. Any implementation, including non-object-oriented
implementations and legacy software, can be made to provide object-oriented
interfaces. Encapsulation of these systems becomes feasible by means of object-oriented
wrappers or adaptors.

The language independence feature of OMG Interface Definition Language (IDL)
facilitates isolation of interface definitions from object implementations. It allows
objects to be constructed using different programming languages, and yet, to still
communicate with one another. Language-independent interfaces are important within
heterogeneous systems, since not all prograrnming languages are supported or
available on all platforms. Given the inevitable heterogeneity of distributed object
systems, the simplicity of OMG IDL is critical to the success of CORBA as an
integration technology. For communication between ORBs, HOP provides a common
way to connect distributed objects across the Internet and intranets. Consequently,
CORBA is becoming almost as ubiquitous as TCP/IP, creating a mass market for

38

DSTO-GD-0192

components that run on top of CORBA middleware. For example, Visigenic ORB is
now incorporated in all Netscape browsers and servers, which become IlOP-compliant.

After the creation of the CORBA specification, the OMG is shifting the power to set its
own technical directions, resulting in a change of OMG focus from the CORBA
component to other higher level components of the OMA A collection of OMG Object
Services, called CORBAservices, is provided for construction of higher level facilities
and object frameworks. These include Naming, Events, Life Cycle, Persistence,
Relationships, Externalisation, Transactions, Concurrency Control, Licensing, Query,
Properties, Security, Time, Collections, and Trading Services. These are the basic
building blocks for a distributed object infrastructure.

The CORBA specification has laid the groundwork for interoperability, and now
domain-specific business processes and requirements need to be addressed. Higher
level services are collectively called OMG Common Facilities, or CORBAfacilities,
providing standardised interfaces to common application services that are applicable
to most domains. Both CORBAservices and CORBAfacilities are the upper layers that
can be applied differently in various vertical market segments such as financial
systems or CAD systems. As a consequence of these efforts, the development of
standard OMG specifications is moving towards the realisation of a true commercial
off-the-shelf (COTS) software component marketplace. The OMG will continue
working to help create a market in which buying and using software components in
distributed heterogeneous environments becomes a reality.

In addition, the OMG has set up a number of task forces and special interest groups,
which cover nearly the entire spectrum of topics related to distributed computing. Of
particular interest to defence is the Command, Control, Computing, Communications
and Intelligence Special Interest Group (C4I SIG) whose goal is to define a CORBA-
based framework for C4I facilities. Examples of the focus areas have included real-time
CORBA, secure CORBA, CORBA C4I common messaging, and CORBA C4I business
objects for more effective C4I systems implementation.

It is not uncommon that software components of defence applications reside on a
number of diverse computers and operation systems. The CORBA as a middleware
technology can simplify the construction of these applications by providing
standardised mechanisms that distributed components can use to communicate over a
network. Furthermore, the broad availability of the CORBA standard supports a wide
range of platforms and programming languages. Its support for object-oriented
software is an especially good choice for integrating diverse types of systems. Another
important factor is its accompanying long-term OMA for defining and integrating
supporting services. Importantly, applying CORBA technology to C4I problems in the
military environment provides simple integration of legacy software and COTS
software.

39

DSTO-GD-0192

References

[1] John R. Nicol, C. Thomas Wilkes, and Frank A. Manola, "Object Orientation in
Heterogeneous Distributed Computing Systems," IEEE Computer, June 1993, pp.
57-67.

[2] Robert Orfali, Dan Harkey, and Jeri Edwards, "Instant CORBA," John Wiley &
Sons, 1997.

[3] "A Discussion of the Object Management Architecture," Object Management
Group, January 1997.

[4] Ron Ben-Natan, "CORBA: A Guide to the Common Object Request Broker
Architecture," McGraw-Hill, 1995.

[5] Alan Pope, "The CORBA Reference Guide: Understanding the Common Object
Request Broker Architecture," Addison-Wesley, 1997.

[6] Steve Vinoski, "CORBA: Integrating Diverse Applications within Distributed
Heterogeneous Environments," IEEE Communications, February 1997, pp. 46-55.

[7] Steve Vinoski, "Distributed Object Computing with CORBA," C++ Report, vol. 5,
July/ August 1993.

40

DSTO-GD-0192

Appendix — ORB Pseudo-Objects

ORB and object adaptor functionalities are usually presented as pseudo-objects, which
have interfaces but may not actually be implemented by an object. A pseudo-object has
the appearance of an object implementation with an IDL-defined interface just like any
other, but the implementation may simply trap these operations from within the ORB
and service them in the ORB. The concept of modelling all functions as being
performed by objects, even when this is not the case, is useful. It permits all functions
to be defined as operations in IDL interfaces.

A pseudo-object cannot be invoked with the dynamic interface because it does not
have object references. A pseudo-object does not inherit from CORBA::Object, the root
interface of all CORBA objects. Apart from the standard OMG IDL types (see Figure 3)
which must be available in all ORB implementations, the ORB pseudo-objects should
also be made available in any language mapping.

A.1 Environment Interface

The Environment interface provides a vehicle for dealing with exceptions in those
cases where true exception mechanisms are unavailable or undesirable (for example in
the DIT). They may be set and inspected using the exception attribute. The clear ()
function causes the Environment to delete any Exception it is holding.

interface Environment
{

attribute exception exception;
void clear();

};

A.2 Request Interface

The Request interface provides the primary support for DII. Both the Object and
Request interfaces contain operations that permit a client to dynamically create and
invoke a request for an object of arbitrary type to perform an arbitrary operation. A
new request on a particular target object may be constructed using the short version, or
one of the long forms of the request creation operation in the Object interface.
Alternatively, arguments and contexts may be added after construction via the
corresponding attributes in the Request interface. The Request interface also allows the
client application to supply all information necessary for the invocation without
requiring the ORB to utilise the Interface Repository.

The Request interface is used to instantiate CORBA request objects to perform
operations. The add_arg () operation incrementally adds arguments to the request.
An appropriate method is invoked using the invoke () operation. The send()
function initiates a deferred synchronous operation according to the information in the

41

DSTO-GD-0192

Request. It returns control to the caller without waiting for the operation to finish. The
delete () operation deletes the request and reclaims all resources taken up by the
request once it has been completed. The get_response () operation determines
whether the request has completed. The RESP_NO_WAIT response flag indicates that
the caller does not want to wait for a response even if the request is still in progress.

interface Request
{

Status add_arg(
in Identifier name, // argument name
in TypeCode arg_type, // argument datatype
in void * value, // argument value to be added
in long len, // length/count of argument value
in Flags arg_flags // argument flags

);
Status invoke(

in Flags invoke_flags // invocation flags
);
Status delete ();
Status send(

in Flags invoke_flags // invocation flags
);
Status get_response(

in Flags response_flags // response flags
);

A.3 Context Interface

The Context interface supplies optional context information associated with a method
invocation. A Context object contains a list of properties, each consisting of a name and
an associated string value. Context properties represent information about the client,
environment, or circumstances of a request that are inconvenient to pass as parameters.

The set_one_value () operation sets a single context object property, whereas the
setvalues () operation sets one or more property values in the context object. The
get_values() operation retrieves the specified context property value(s). This
operation can use a wildcard to match all properties with a name matching the
specified part and anything in the segments which is a wildcard. The
delete_values () operation deletes the specified property value(s) from the context
object. The create_child() operation creates a child context object. The indicated
context object is deleted using the de 1 e t e () operation.

interface Context
{

Status set one value(

42

DSTO-GD-0192

in Identifier prop_name, // property name to add
in string value //property value to add

); ■

Status set_values(
in NVList values // property values to be changed

);
Status get_values(

in Identifier start_scope, II search scope
in Flags op_flags, // operation flags
in Identifier prop_name,// name of property(s) to retrieve
out NVList values // requested property(s)

);
Status delete_values(

in Identifier prop_name // name of property(s) to delete

) ;
Status create_child(

in Identifier ctx_name, // name of context object
out Context child_ctx //newly created context object

)''
Status delete(

in Flags del_flags // flags controlling deletion

);

A.4 ORB Interface

The ORB interface is the programmer interface to the Object Request Broker. Object
references may be translated into string form by the ob j ect_to_string () operation
to facilitate storage or communication of object references. Subsequently, the
string_to_obj ect () operation returns the corresponding object reference.

The createlist () operation creates a pseudo-object by allocating a list structure of
the specified size for initial use. The create_operation_list () operation returns
an NVList pseudo-object initialised with the argument descriptions that may be used
in dynamic invocation requests. The create_named_value () operation creates
NamedValue objects to be used as return value parameters for the
create_request () operation provided by the Object interface. When a request is
invoked, the create_exception_list() and create_context_list ()
operations create art ExceptionList providing a list of TypeCodes for all user-defined
exceptions, and a ContextList providing a list of Context strings, respectively. A
reference to the default process Context pseudo-object is returned using the
get_default_context () operation. The create_environment () operation
constructs an Environment.

The send_multiple_requests () operation initiates more than one request in
parallel. If the INV_N0_RESP0NSE invocation flag is set, it is an one-way operation and
the invoker does not intend to wait for a response. The get_next_response()

43

DSTO-GD-0192

operation returns the next request that completes. The RESP_NO_WAIT response flag
indicates that the caller does not want to wait for a response even if there are no
completed requests pending.

Specific to object initialisation, the BOA_init () operation obtains a reference to the
BOA pseudo-object for object registration with the ORB. Invoking
list_initial_services () returns a list of names to well-known services, whereas
the resolve_initial_references () operation converts these string names of
services to object references.

interface ORB
{

string object_to_string(in Object ob j) ;
Object string_to_object(in string str);
Status create_list(

in long count,
out NVList new_list

);
Status create_operation_list(

in OperationDef oper,
out NVList new_list

);
Status create_named_value(out NamedValue nmval);
Status create_exception_list(out ExceptionList exclist);
Status create_context_list(out ContextList ctxlist);

Status get_default_context(out Context ctx);
Status create_environment(out Environment new_env);

Status send_multiple_requests(
in RequestSeq req,
in Flags invoke_flags

);
Status get_next_response(

out Request req,
in Flags response_flags

);

BOA BOA_init(
inout arg_list argv,
in OAid boa_identifier

);
ObjectldList list_initial_services();
Object resolve_initial_references(in Objectld identifier)

raises(InvalidName);
} ;

44

DSTO-GD-0192

A.5 BOA Interface

The BOA interface mediates between the ORB and the object implementation by
providing operations that the object implementation can access. Once it initialises itself,
the implementation notifies the BOA that it is prepared to handle requests by calling
impl_is_ready() or obj_is_ready 0 for per-object servers. The server remains
active and will receive requests until it calls deactivate_impl (). The
deactivate_obj () operation is used to deactivate objects that run within
implementations. The create () operation is used to describe the implementation of a
new object instance to the BOA and obtain a reference. The reference data associated
with an object is obtained using the get_id() operation. The
change_implementation () operation updates the implementation information
associated with an existing object. An object reference is destroyed by the dispose ()
operation. This handles the destruction of the object only as far as the BOA and the
ORB are concerned, the actual object must be destroyed and resources deallocated by
the implementation. The object implementation can obtain the principal on whose
behalf the request is performed by the getprincipal () operation

interface BOA
{ .

Object create(
in ReferenceData id,
in InterfaceDef intf,
in ImplementationDef impl

);
void dispose(in Object obj);
ReferenceData get_id(in Object obj);
void change_implementation(

in Object obj,
in ImplementationDef impl

);
Principal get_principal(

in Object obj,
in Environment ev

);
void set_exception (

in exception_type major, // NO, USER, or
// SYSTEM_EXCEPTION

in string userid, // exception type id
in void *param // pointer to associated data

void impl_is_ready(in ImplementationDef impl);
void deactivate_impl(in ImplementationDef impl);
void obj_is_ready(

in Object obj,
in ImplementationDef impl

) ;
void deactivate obj(in Object obj);

45

DSTO-GD-0192

};

A.6 TypeCode Interface

In CORBA, TypeCodes are defined to represent each of the IDL-defined data types. A
TypeCode is an association of a kind with a parameter list. It is used as a coding object
for types which are part of many IDL declarations. These TypeCodes create self-
describing data that can be passed across operating systems, ORBs, and Interface
Repositories. The TypeCode interface defines a set of methods that operate on
TypeCodes.

The BadKind{} exception is raised if an operation that is not appropriate for the
TypeCode kind is invoked. The Bounds {} exception is raised by an operation if the
index parameter is greater than or equal to the number of members constituting the
type.

Applying the equal () operation to equal TypeCodes gives identical results. The
kind () operation determines what other operations can be invoked on the TypeCode.
The id () operation returns the Repositoryld globally identifying the type. The
name () operation gets the simple name identifying the type within its enclosing scope.
Invoking member_count () on structure, union, and enumeration returns the number
of members constituting the type, while member_name () returns the simple name of
the member identified by index. The member_type () operation invoked on
structure and union obtains the TypeCode describing the type of the member
identified by index. Invoking only on union, member_label () returns the label of
the union member identified by index, discriminator_type () returns the type of
all non-default member labels, and de f aul t_index () returns the index of the default
member. The length () operation gets the bound for strings and sequences, or the
number of elements for arrays. The content_type () operation gives the element
type for sequences and arrays, or the original type for aliases. The param_count ()
and parameter () operations only provide access to those parameters that were
present in previous versions of CORBA.

interface TypeCode
{

exception Bounds{};
exception BadKind{};

boolean equal(in TypeCode tc) ;
TCKind kind();

Repositoryld id() raises(BadKind);
Identifier name() raises(BadKind);

unsigned long member_count() raises(BadKind);
Identifier member name(in'unsigned long index)

46

DSTO-GD-0192

raises(BadKind, Bounds);

TypeCode member_type(in unsigned long index) raises(BadKind,
Bounds);

any member_label(in unsigned long index) raises(BadKind,
Bounds);

TypeCode discriminator_type () raises(BadKind);
long default_index() raises(BadKind);

unsigned long length() raises(BadKind);

TypeCode content_type() raises(BadKind);

long param_count();
any parameter(in long index) raises(Bounds);

>'*

A.7 Principal Interface

The Principal interface represents information about principals requesting operations.
There are no defined operations.

interface Principal!};

A.8 NVList Interface

The NVList interface defines operations to construct parameter lists. An NVList object
maintains a list of self-describing data items called NamedValues. The add () function
creates an unnamed value/initialising only the flags. The additem () function adds a
new item to the indicated list, whereas the add_value () function initialises name,
value, and flags. The total number of items in the list is returned by the get_count ()
function. The item () function can be used to access existing elements. The free ()
operation frees the list structure and any associated memory, while the
freejmemory () operation frees any dynamically allocated out-arg memory
associated with the list. An item can be removed from the list by invoking remove ().

interface NVList

NamedValue add(in Flags flags);
NamedValue add_item(

in Identifier item_name, // name of item
in Flags flags // item flags

);
NamedValue add_value(

in Identifier item_name,
in any val, . ■ .- // item value
in Flags flags

47

DSTO-GD-0192

Status get_count(
out long count // number of entries in the list

) ;
NamedValue item(in unsigned long index) raises(Bounds);
Status free();
Status free_memory();
Status remove(in unsigned long index) raises(Bounds);

};

48

DISTRIBUTION LIST

A Primer of CORBA: A Framework for Distributed Applications in Defence

T.A.Au

AUSTRALIA

DEFENCE ORGANISATION

C3ID Branch
DGC3ID

„DCD
DOIS

S&T Program
Chief Defence Scientist 1
FAS Science Policy r shared copy
AS Science Corporate Management J • ■
Director General Science Policy Development
Counsellor Defence Science, London (Doc Data Sheet)
Counsellor Defence Science, Washington (Doc Data Sheet)
Scientific Adviser to MRDC Thailand (Doc Data Sheet)
Scientific Adviser Policy and Command
Navy Scientific Adviser (Doc Data Sheet and distribution list only)
Scientific Adviser - Army (Doc Data Sheet and distribution list only)
Air Force Scientific Adviser (Doc Data Sheet and distribution list only)

Aeronautical and Maritime Research Laboratory
Director

Electronics and Surveillance Research Laboratory
Director

Chief of Communications Division
Research Leader Military Information Networks
Head Network Integration Group
Author: T. A. Au

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Library Salisbury (2 copies)
Australian Archives
Library, MOD, Pyrmont (Doc Data sheet only)

*US Defense Technical Information Center, 2 copies
*UK Defence Research Information Centre, 2 copies
*Canada Defence Scientific Information Service, 1 copy
*NZ Defence Information Centre, 1 copy
National Library of Australia, 1 copy

Capability Development Division
Director General Maritime Development (Doc Data Sheet only)
Director General Land Development (Doc Data Sheet only)
Director General Aerospace Development (Doc Data Sheet only)

Navy
Communications School (Navy), HMAS Cerberus, Hastings, Victoria.

Army
SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet

only)
NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool

Military Area, NSW 2174 (Doc Data Sheet Only)
School of Signals, Simpson Barracks, Macleod, Victoria.

Air Force
School of Technical Training, RAAF Base, Wagga, NSW 2651.

Acquisitions Program
PDJCSE
PDJISE
PDBCSS

Intelligence Program
DGSTA Defence Intelligence Organisation

Corporate Support Program
OIC TRS, Defence Regional Library, Canberra

SPARES (5 copies)

Total number of copies: 49

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

2. TITLE

A Primer of CORBA: A Framework for Distributed Applications
in Defence

4. AUTHOR(S)

T. A. Au

6a. DSTO NUMBER
DSTO-GD-0192

8. FILE NUMBER
E8709/4/19 (1)

6b. AR NUMBER
AR-010-622

9. TASK NUMBER
ADF96/295

1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION) .

Document
Title
Abstract

(U)
(U)
(U)

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory

PO Box 1500
Salisbury SA 5108 Australia

6c. TYPE OF REPORT
General Document

10. TASK SPONSOR
DGC3ID

13. DOWNGRADING/DELIMITING INSTRUCTIONS

7. DOCUMENT DATE
March 1999

11. NO. OF PAGES
48

12 NO. OF
REFERENCES
7

14. RELEASE AUTHORITY

Chief, Communications Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600 . ,
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

CORBA (Computer architecture); Object-oriented systems architecture; Systems integration; Interoperability; Command, control,

communications, computers and intelligence

19.ABSTRACT
Based on object technology, the OMG defines an Object Management Architecture (OMA) for the support
of interoperable applications across heterogeneous computing platforms. The communication core of this
underlying model is the Common Object Request Broker Architecture (CORBA) that provides a
framework for flexible and transparent communication between distributed objects. The adoption of this
approach eases software development by allowing interaction between reusable components through
well-defined interfaces. In particular, applying CORBA technology to C4I problems in the military
environment provides simple integration of legacy software and COTS software. This report provides an
overview of the OMA, and describes in detail each component of CORBA.

Page classification: UNCLASSIFIED

